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Welcome back to Issue 2 of the Wilsonian Flux, and a happy new year! I’ve had a lot of
interest expressed in writing for the publication, and so you can expect issues to contain
articles written by other students as well from now on - if you’d like to write, feel free to
contact me. Enjoy the read!
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Figure 1: The 1927 Solvay Conference, titled “Electrons and Photons”, where the world’s most notable
physicists met, including, but not limited to Schrödinger, Pauli, Heisenberg, Dirac, de Broglie, Bohr,
Planck, Einstein and Curie [1]
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1 An introduction to AC circuits

Written by Vivaan, Year 12

1.1 Introduction

Almost all circuits encountered up to A Level are direct current circuits. I’ll now introduce
alternating current circuits, where the current and voltage are varying sinusoidally. This is an
extremely useful skill, given that mains power in the UK is AC. There are three main compo-
nents that form a major part of AC circuit analysis: resistors, capacitors and inductors. Given
that I’ve probably listed those in order of decreasing familiarity, I’ll give a brief introduction
to them soon.

1.2 Sinusoidal Voltage

In AC circuits, the voltage varies sinusoidally:

V (t) = Vmax sin(ωt + ϕ) = Vmaxe
i(ωt+ϕ)

Here, Vmax is the peak voltage (which would be the amplitude of the sinusoid), ω is the
angular frequency, and ϕ denotes a phase shift, meaning that voltage does not have to be 0
at t = 0, so the sinusoid can be shifted along the time axis. Note that we could have also
used a cosine wave, and introduced a phase shift of π

2 , to reach an equivalent sinusoid. As a
consequence, we can also represent the voltage as a phasor in complex exponential form.

Another important value for any AC voltage is the rms, or root mean square, voltage. This
simply refers to the “equivalent” DC voltage; in other words, given a certain time period,
what DC voltage would lead to the same amount of energy being lost in the circuit as the AC
voltage. We can calculate it as the average value of the square of the function over a period
T and then taking the positive squareroot:

Vrms =
√

1
T

∫ T

0
V 2

max sin2(ωt)dt

Vrms =
√

V 2
max
T

∫ T

0

1
2 (1 − cos(2ωt)) dt

Vrms =
√

V 2
max
2T

[
t − 1

2 sin(2ωt)
]t=T

t=0

Vrms =
√

V 2
max
2T

(
T − 1

2 sin(2ωT )
)

Vrms =
√

V 2
max
2T

(
T − 1

2 sin(4π)
)

Vrms =
√

V 2
max
2 = Vmax√

2

Therefore, we have derived the relation that for an AC voltage, Vrms = Vmax ÷
√

2. The
jump from 2ωt to 4π might be confusing, but recall that ω = 2π

T
. The same logic can be

applied to calculate an rms current.
Phasors are used just as they are in other contexts with waves to describe sinusoidal

voltage and current. As such we can consider the “lag” between two different sinusoids to
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Figure 2: The rms voltage is the “equivalent” DC voltage [2]

be the angle between their phasors at any time. Just as a quick reminder, phasors rotate
anticlockwise from the positive x-axis. By convention, the length of the voltage phasor
represents the rms voltage. Furthermore, we can represent phasors as complex numbers, in
either Cartesian form, or modulus-argument form - both representations lend themselves to
different applications. We can also represent a complex number in exponential form, using
Euler’s formula: eix = cos x + i sin x.

1.3 Resistors, Capacitors and Inductors

We can now consider the behaviour of circuits containing passive components such as resistors,
capacitors and inductors. It’ll be necessary to discuss new concepts such as impedance and
reactance, which didn’t exist in DC circuits.

AC Resistance

As defined by Ohm’s Law, we know that the voltage across an ohmic resistor is directly
proportional to its resistance and current flowing through it. For AC circuits containing only
resistors and an AC source, we can simply adapt Ohm’s Law:

V (t) = I(t)R = Imaxe
iωt

Now we are able to calculate the current flowing through a resistor at a given point in time,
as well as the voltage across it. So for a purely resistive circuit the alternating current flowing
through the resistor varies in proportion to the applied voltage across it following the same
sinusoidal pattern. As the supply frequency is common to both the voltage and current, their
phasors will also be common resulting in the current being “in-phase” with the voltage. Using
our knowledge of the rms voltage and current, we can say that for a resistor, R = Vrms ÷ Irms.
This relationship between voltage and current was simply called resistance in DC circuits.

For AC circuits, as we generalise to other components, we call the relationship between
peak voltage and peak current, the impedance. Impedance is given the symbol Z.

Z = Vpeak

Ipeak

The unit of Z is the ohm (Ω). Therefore, for a resistor in a DC circuit or an AC circuit,
we can say that R = Z. This will not be true for other components such as capacitors and
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inductors, where the impedance will also have a imaginary part, called the reactance, X. The
impedance is the vector sum of the two: Z =

√
R2 + X2. In other scenarios, it makes sense

to write the impedance as ac complex number: Z = R + iX. As such we can represent the
impedance of a component in an AC circuit in the following equivalent forms:

Z =
√

R2 + X2 = R + iX =
(√

R2 + X2
)

ei arctan( Y
X ) = Z0e

iϕ

Impedance follows the same laws as resistance in a circuit: that is, impedances in series
are summed and the sum of the reciprocals of the impedances across parallel branches gives
the reciprocal of the effective impedance of the parallel branches together.

AC Capacitance

Capacitors are electrical components which store energy on their plates in the form of electrical
charge. The unit for capacitance is Farad (F). When a capacitor is connected across a DC
supply voltage it charges up to the value of the applied voltage at a rate determined by its
time constant and will maintain or hold this charge indefinitely as long as the supply voltage
is present.

When connected to an AC source, the voltage across a capacitor “lags” π
2 behind the

current. This is because the capacitor resists changes in voltage - it first has to charge or
discharge to accommodate the varying voltage.

Figure 3: Voltage and current for a capacitor in an AC circuit, where the darker line is the voltage and
lighter line is the current [3]

The opposition to current flow is called reactance. Let’s derive the equation for the
impedance of a capacitor:

I(t) = C
dV

dt

I(t) = C
d

dt

(
eiωt

)
I(t) = iωC

(
eiωt

)
I(t) = iωCV (t)

Z = V (t)
I(t) = 1

iωC
= 1

2iπfC

Recall that the imaginary component of the impedance was called the reactance. Since
there is no real part to the impedance of a capacitor, we can simply say that it has a purely
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reactive impedance. The reactance of the capacitor will decrease as the frequency of the
supply voltage increases. Let’s derive the fact that the voltage lags a quarter cycle behind the
current. We know that the impedance can be given as 1

iωC
, so then:

1
iωC

= 1
ωC

1
i

= 1
ωC

1
ei π

2
= 1

ωC
e−i π

2

The −π
2 term indicates to us that the voltage is a phase angle of π

2 behind the current for
a capacitor.

AC Inductance

Inductors are probably the least familiar component that we have discussed so far. Just as
a capacitor stores energy in the form of electrical charge, an inductor stores its energy as
a magnetic field. The simplest inductor is simply a coil of wire, often wrapped around a
ferromagnetic material to increase a property called inductance. You may be familiar with
inductors in the context of transformers, which is essentially two inductors connected to two
different circuits. An inductor can also act as an electromagnet.

An inductor tends to resist changes in the current flowing through it. This is because the
magnetic flux through the coil due to the current decreases as the current decreases, and due
to Faraday’s and Lenz’s Laws, there will be an electromotive force (EMF) acting to oppose
this change. The inductance of an inductor is measured in Henries (H). One henry is defined
as the amount of inductance which, when the rate of change of current is one ampere per
second, will induce an emf of one volt. This leads us to the definition of inductance:

V = L
dI

dt
−→ L = V

dI
dt

The behaviour of an inductor in a DC circuit is in many ways analagous to that of a
capacitor - I won’t discuss this in too much detail as I’ll focus on how they behave in AC
circuits.

Let’s see if we can derive an expression for the impedance of an inductor, similar to how
we did for a capacitor:

V (t) = L
dI

dt∫
V0e

iωtdt = L
∫ dI

dt
dt

V0

iω
eiωt = LI(t)

1
iω

V (t) = LI(t)

Z = V (t)
I(t) = iωL = 2iπfL

Much like a capacitor, the impedance of an inductor is purely reactive. However, unlike
a capacitor, we can now see that the voltage for an inductor leads the current by a quarter
cycle instead. Knowing the impedance to be iωL, we see:

iωL = Lωei π
2
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We see that the π
2 term in the exponent indicates that the voltage is a phase angle of π

2
ahead of the current.

Figure 4: Voltage and current for a inductor in an AC circuit, where the darker line is the voltage and
lighter line is the current [3]

1.4 RLC Circuit Analysis

Armed with knowledge about the impedances of these 3 different components, we can tackle
AC circuits containing them. This would best be demonstrated through an example. Consider
the following circuit:

R L
C

Here, the supply voltage supplies a maximum of V0 = 100V and operates at f = 50Hz.
The resistance R = 12Ω, inductance L = 0.15H and capacitance C = 100µF. Calculate the
impedance of the circuit and the maximum current within the circuit.

We first calculate the resistances and reactances of each component:

R = R = 12Ω
XL = 2πfL = 47.13Ω

XC = 1
2πfC

= 31.83Ω

We treat the capacitive reactance as negative, since it causes the voltage to lag behind
the current, and since the impedance is the vector sum of the resistances and reactances, we
can calculate the impedance.

Z =
√

R2 + (XL − XC)2 = 19.4Ω

We can now calculate the maximum current.

Imax = Vmax

Z
= 100V

19.4Ω = 0.619A
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2 Fourier Transforms

Written by Vivaan, Year 12

2.1 Transforms, signals and systems

Transforms are essential in a lot of mathematical and physical contexts, among a variety
of problems. They’re simply a mathematical operation that changes the representation of
a function or a signal, usually through a change in domain - think of it like a switch in
perspective, for example, switching from the time domain (how things change over time) to
the frequency domain (how things behave across different frequencies).

It would also make sense to briefly define what a signal is. In essence, signals refer to a
function that represents how something changes over time, such as voltage, sound or temper-
ature. A system is something that modifies a given signal, such as an amplifier or filter. The
ability to interpret and analyse signals is a central challenge in a lot of contexts, as well as
accurately predicting the effect that a system would have on a signal. This is where transforms
are particularly useful: they can reveal patterns and properties of the original signal that may
not be obvious in their initial representation.

I’ll introduce an important transform you’re almost guaranteed to come across in the future
in any maths, physics or engineering discipline: the Fourier transform. In the future, we might
cover another significant transform called the Laplace transform - which is closely related to
the Fourier transform.

2.2 Fourier series and the Fourier Transform

The Fourier Transform is conceptually quite simple, even if the math can look daunting at
first. Given a certain signal, it can represent it as a sum of sines and cosines; for example,
given a sound wave, a Fourier transform of the sound wave would give you its component
frequencies, their amplitudes, and the offsets of each - it’s like finding the ingredients for a
signal. The applications of this are pretty exciting: you could boost the bass of a given sound
wave, or filter through a radio wave in order to only listen to a given frequency.

First, we will discuss what a Fourier series is, before generalising to the Fourier trans-
form. The Fourier series for any periodic function (that is f(x + a) = f(x)) is simply its
representation as a (sometimes infinite) sum of sines and cosines:

f(x) =
∞∑

n=1
αn cos

(2πnx

a

)
+

∞∑
m=0

βm sin
(2πmx

a

)

The coefficients αn and βm are referred to as the Fourier coefficients and can be calculated
for any given x. The question of whether we can do this for any arbitrary periodic function
is rather intricate, but as a general rule of thumb, if

∫∞
−∞ |f(x)|2dx exists and is finite, then

the Fourier series will converge. Functions for which this property holds are referred to as
“square-integrable”. Using Euler’s formula, we can manipulate the above equation into the
following summation:

f(x) =
∞∑

−∞
fne

2πinx
a

Instead of a sum over sines and cosines we have a sum of complex exponentials, which is
much neater. Also notice that we now have a new set of coefficients for each exponential,
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and therefore if the Fourier coefficients are known, we can calculate f(x) using the above
summation.

Conversely, given a function f(x), we should be able to calculate its Fourier series, which
in turn means calculating the Fourier coefficients for each n. We must quickly define the
Kronecker Delta, as follows:

δmn =
0 m ̸= n

1 m = n

Now observe that:

∫ a
2

− a
2

e− 2πimx
a e

2πinx
a dx = aδmn

It is a beneficial exercise to convince yourself of this result for m, n ∈ Z - consider how
the exponents add and the fact that the function is periodic. Therefore, we can now use this
fact for any general function f(x), for which we are trying to find the corresponding Fourier
series.

∫ a
2

− a
2

(
e− 2πimx

a

)
f(x)dx =

(∫ a
2

− a
2

dx

)(
e− 2πimx

a

) [ ∞∑
n=−∞

e
2πinx

a fn

]

=
∞∑

n=−∞

∫ a
2

− a
2

(
e− 2πimx

a e
2πinx

a dx
)

fn

=
∞∑

n=−∞
aδmnfn

= afm

By multiplying the function by e− 2πimx
a , we essentially filter out all other components of

the function, keeping only the Fourier component with the matching index m, and finding
out its Fourier coefficient fm.

Thus we arrive at a set of relations to express a signal f(x) in term of its Fourier components
and to go the other way as well.

f(x) =
∞∑

−∞
eiknxfn

fn = 1
a

∫ a
2

− a
2

eiknxf(x)dx

where kn = 2πn

a

The numbers kn are called the “wave-numbers” and they are quantised to integer multiples
of 2π

a
.

2.3 A square wave

Enough theory - let’s see if we can represent a square wave as a Fourier series. Let’s define
our square wave function’s behaviour by making it negative before x = 0 and jumping to
positive on the y-axis. We will give the function an arbitrary period a.
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Figure 5: A square wave [4]

f(x) =
−1 −a

2 ≤ x < 0
+1 0 ≤ x < a

2

Let us now compute the Fourier coefficients:

fn = 1
a

∫ a
2

− a
2

eiknxf(x)dx

= 1
a

(∫ 0

− a
2

eiknx(−1)dx +
∫ a

2

0
eiknx(1)dx

)

= 1
a

(
−
∫ 0

− a
2

eiknxdx +
∫ a

2

0
eiknxdx

)

= 1
a

−
[

eiknx

ikn

]0

− a
2

+
[

eiknx

ikn

]a
2

0


= 1

a

(
− 1

ikn

(
1 − e− ikna

2
)

+ 1
ikn

(
e

ikna
2 − 1

))
= 1

aikn

(
2 −

(
e−iπn + eiπn

))
= 1

aikn

(2 − 2 cos(πn))

= 2
aikn

(1 − cos(πn))

= 4
aikn

sin2
(

πn

2

)
= 4

πni
sin2

(
πn

2

)

Using this result, we can differentiate between odd and even values for n.

fn =


2
πni

for odd n

0 for even n

9



Figure 6: The first three terms of the Fourier series for a square wave [5]

Finally, we can represent the square wave as an infinite Fourier series. We notice that
because the function is odd and symmetric about x = 0, all the cosine terms in its expansion
will cancel out, leaving only sine terms. Furthermore, it is important to note that fn and f−n

are complex conjugates, which results in a purely real sine series, with coefficients doubled
from what you would expect them to be.

f(x) = 4
π

sin
(2πx

a

)
+ 4

3π
sin

(6πx

a

)
+ 4

5π
sin

(10πx

a

)
+ . . .

= 4
π

∞∑
n=1,3,5...

1
n

sin
(2nπ

a

)

We have now successfully represented a square wave as an infinite Fourier summation.
Adding more terms to the summation would lead it to be closer and closer to the actual
square wave, but otherwise this is technically only an approximation, similar to Maclaurin and
Taylor series.
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3 Partial Derivatives

Written by Adhrit, Year 12

3.1 The motivation behind partial derivatives

We all know what derivatives are. The standard dy
dx

. The limit as h approaches 0 of f(x+h)−f(x)
h

.
It gives the gradient of a function. More generally, the rate at which one variable is changing
with respect to another. It can be used to model how quickly a population is growing per
given unit of time, how much a tank is emptying by per unit time, maximising the volume of
an object from a given area of material. The options are endless. But what happens when
you have a function that’s dependent on many variables? The normal differential operator
doesn’t work, and it is here where partial derivatives come in.

The standard differential operator d
dx

, or otherwise expressed as f ′(x) tells us what we are
differentiating with respect to. But what happens when we have a function that’s dependent
on both x and y? If we have a function f(x) and we plot y = f(x) against the input x,
a standard curve on a 2D plane is obtained. However if we have a function f(x, y) plotted
against a 3rd variable z, what we obtain is a surface in space. Now as there are two variables,
the derivative with just respect to x or y can’t be taken. So how do we get the gradient, or
rate of change, of this surface? The answer to this is partial derivatives. The partial derivative
of z = f(x, y) with respect to x can be written in the following equivalent forms:

fx(x, y) = fx = ∂f

∂x
= ∂

∂x
(f(x, y)) = zx = ∂z

∂x
= Dxf

3.2 Computing partial derivatives

If you are comfortable with differentiation with a single variable, partial derivatives won’t be
a significant jump. When differentiating a multivariable function with respect a variable, you
simply have to treat all the other variables as a constant. For example, given a function
f(x, y) = exy + sin(x2y), let’s compute the partial derivatives with respect to both x and y.
So to get ∂f

∂x
, take the normal derivative with respect to x treating y as a constant:

∂

∂x
f(x, y) = ∂

∂x
(exy + sin(x2y))

= ∂

∂x
(exy) + ∂

∂x
(sin(x2y))

∂f

∂x
= yexy + 2xy cos(x2y)

We can calculate the partial derivative with respect to y, by treating x as a constant:

∂

∂y
f(x, y) = ∂

∂y
(exy + sin(x2y))

∂f

∂y
= xexy + x2 cos(x2y)
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Here is the graph of f(x, y). We can also compute higher order derivatives, just as we
could with single variable functions. However, the extra complexity lies in the fact that we can
compute the derivative with respect to one variable first, and then with a different variable
the second time. Let’s demonstrate this and see if any interesting results arise.

3.3 Clairaut’s Theorem

Given a function of two variables f(x, y) it is possible to compute a total of 4 different partial
derivatives, depending on the order that we differentiate in:

• Differentiate with respect to x twice: ∂2f
∂x2

• Differentiate with respect to y twice: ∂2f
∂y2

• Differentiate with respect to x then with respect to y: ∂2f
∂y∂x

• Differentiate with respect to y then with respect to x: ∂2f
∂x∂y

Note the order matters when writing mixed derivatives, and that in different notation the
order may be different, that is: fxy = ∂2f

∂y∂x

Now let’s carry on with our example from earlier, and compute both of the mixed deriva-
tives, by differentiating ∂f

∂x
with respect to y to obtain ∂2f

∂y∂x
and by differentiating ∂f

∂y
with

respect to x to obtain ∂2f
∂x∂y

.

∂2f

∂x∂y
= ∂

∂x

(
∂f

∂y

)

= ∂

∂x
(yexy + 2xy cos(x2y))

= ∂

∂y
(yexy) + ∂

∂y
(2xy cos(x2y))

= exy + xyexy + 2x cos(x2y) − 2x3y sin(x2y)

Note that we used the product rule for differentiation in the last line, and it works analo-
gously to how it would with a single variable. Now let’s compute the other mixed derivative:
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∂2f

∂x∂y
= ∂

∂x

(
∂f

∂y

)

= ∂

∂x
(xexy + x2 cos(x2y))

= ∂

∂x
(xexy) + ∂

∂x
(x2 cos(x2y))

= exy + xyexy + 2x cos(x2y) − 2x3y sin(x2y)

And we have thus demonstrated Clairaut’s Theorem, that is: ∂2f
∂x∂y

= ∂2f
∂y∂x

. This can
easily be generalised to functions of higher dimensions e.g. fxyzt = ftxzy, or even with higher
order derivatives that involve differentiating with respect to the same variable multiple times
e.g. fxyzxxyz = fxxxyyzz. This is subject to some continuity conditions, but this will work
for all “nice” functions. Using this can sometimes making finding higher-order derivatives of
multivariable functions easier than it would be by differentiating in a different order. This result
is also known as Schwarz’s Theorem and Young’s Theorem, as well as Clairaut’s Theorem. For
further reading, look into the Hessian matrix and convince yourself using Clairaut’s Theorem
that the Hessian matrix for any multivariable function is always symmetric along its diagonal.

3.4 Directional derivatives

Let’s consider how we would go about finding the gradient of a 3D function. It is important
to note that the meaning of “gradient” tends to be slightly less specific than the 2D version,
since there are now multiple different directions that we could travel in on the plane, each with
a different rate of change. Finding just one partial derivative assumes that you are holding
the other variables constant, but what if we don’t want to do this.

As a result, the gradient is simply a vector made up of all the partial derivatives of a
function. For a function f(x, y) the gradient, typically denoted as ∇⃗f is equal to fxî + fyĵ.
So the partial derivatives become the corresponding components of a vector in it’s direction.
To find the gradient of a function, we need to define what direction we are going in, and as a
result a directional derivative can only be found with a unit vector in mind - this unit vector
will be the direction that we are travelling in.

This can be extended to more dimensions, if you have a function f(x, y, z, ...), ∇⃗f will be
fxî + fyĵ + fzk̂ + ... where the resulting vector ends up being the the slope of the function
at any given point.

For example, given f(x, y, z) = exz6 cos(y), then:

∇⃗f =

fx

fy

fz

 =

 exz6 cos(y)
−exz6 sin(y)
6exz5 cos(y)


Now to find the directional derivative in the direction of a unit vector u⃗ = âi + bĵ + ck̂,

we can simply compute ∇⃗f · u⃗. This is represented Du⃗f Say we wanted to find the gradient
at a point (x0, y0, z0) in the direction of u⃗, we would simply evaluate (fx(x0)̂i + fy(y0)ĵ +
fz(z0)k̂) · u⃗. Note that we can now consider first order partial derivatives to just be directional
derivatives in the direction of the basis vectors; that is, fx is simply the directional derivative
in the direction of î. This works similarly for fy and fz.

The maximum value of the directional derivative Du⃗f at r⃗ is |∇⃗f(r⃗)| and in the direction
given by ∇⃗f(r⃗). This allows us to do a lot of things such as finding the maximum rate of
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change of function at a given point, and the direction we need to move in to achieve that
maximum rate of change.

3.5 The wave equation

So what examples of partial derivatives exist in our applied physical world then? Perhaps one
of the most famous instances where they are involved is in the wave equation, which a second
order partial differential equation.

∂2u

∂t2 = c2 ∂2u

∂x2

This tells us for some wave function u(x, t) the second partial derivative of the wave with
respect to time is equal to the speed of the wave squared multiplied by the second partial
derivative of the wave with respect to space. For a three dimensional representation, it can
be extended to the three dimensions of space (and time):

∂2u

∂t2 = c2
(

∂2u

∂x2 + ∂2u

∂y2 + ∂2u

∂z2

)
= c2(∇2u)

It is imperative to note that this model was developed with general assumptions, so different
assumptions will lead to different variations and models. This is just a general equation. Here
we also introduce the Laplacian, ∇2, which is the sum of the second order partial derivatives
with respect to each variable - it has many useful properties.

The shape within which the waves arise in higher dimensions or domains (like 3) can be
complicated, but for any chosen shape of domain, they are functions analogous to Bernoulli’s
sines and cosines - the simplest patterns of vibration. These patterns are called modes,
and all other waves can be obtained by superposing these normal modes, with using infinite
series if necessary. These principles can be applied to many sorts of waves: water, sound,
electromagnetic, even quantum waves, but also very interestingly, earthquakes.

Sophisticated versions of the wave equation which were created using different modelling
assumptions allowed scientists to analyse pressure and shear waves (P and S waves) that were
generated from earthquakes. From this, an understanding of what was going on thousands
of kilometers below the Earth’s surface. Aside from the analysis leading to the realisation of
Earth having a liquid outer core and a solid inner core, analysis derived from the wave equation
led to the mapping of tectonic plates as they slide beneath each other (subduction) which is
what causes the earthquakes. Recently, it was found that plates don’t need to subduct as a
whole, but can break into gigantic slabs and sink back into the mantle at different depths,
causing earthquakes. The biggest aim in this field is to use these models and future ones
to be able to predict when these tremors will occur, allowing the area to be appropriately
prepared and evacuated potentially saving hundreds and thousands of lives. Currently, it still
all seems pretty elusive, partially due to the fact that the conditions that trigger earthquakes
are a combination of several factors spread over several locations, making it hard to combine
these to make predictions. However, progress is being made, and seismologists using the wave
equation are underpinning several other methods in trying to be able to make these life-saving
future predictions.
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4 Problems

AC Circuits

1. Explain why at high frequencies a capacitor acts as an ac short, whereas an inductor acts
as an open circuit.

2. In an RLC series circuit, can the voltage measured across the capacitor be greater than
the voltage of the source? Answer the same question for the voltage across the inductor.

3. An RLC series circuit with R = 600Ω, L = 30mH and C = 0.050µF is driven by an AC
source whose frequency and voltage amplitude are 500Hz and 50V, respectively.

(a) What is the impedance of the circuit?
(b) What is the amplitude of the current in the circuit?
(c) What is the phase angle between the emf of the source and the current?

Fourier Transform

1. Sketch the graph of the integral of the square wave function.

2. Find an expression for this function and consequently find the Fourier series for it - there’s
a short way and a long way.

3. Evaluate:
∞∑

n=1

1
n2

Partial Derivatives

1. Find ∂z
∂x

for:

x2 sin(y3) + xe3z − cos(z2) = 3y − 6z + 8

2. Given f(x, y, z) = x4y3z6, find ∂6f
∂y∂z2∂y∂x2

3. Find the maximum rate of change of the function f(x, y) =
√

x2 + y4 at (−2, 3).

4. Given PV = nRT , evaluate:

∂P

∂V

∂V

∂T

∂T

∂P
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5 Solutions

These are my solutions to the problems listed in Issue 1 (December 2024). Sometimes solutions
can be just as interesting as problems, so if a particular solution catches your eye, I’d encourage
you to go and see how you would have gone about solving the problem initially!

Exploring rotational motion

1. Q: Explain why it is easier to balance a cup on a finger upside down, with your
finger inside the cup, as opposed to a cup the right way up, with your finger
under the base.
The difference in ease of balancing the cup is due to the position of the centre of mass
of the cup relative to the pivot (where your finger meets the cup). With the whole cup
above your finger, a small deviation causing the centre of mass to move off the line of
action will cause a moment around your finger, causing the cup to topple even further,
making it unstable. With your finger inside the cup, the centre of mass of the cup
essentially lies within your finger. Any small movement causing the centre of mass will
cause a moment about your finger, which will restore the cup to its equilibrium position.
This restoring moment makes it easier to balance a cup this way round.

2. Q: For two point masses with mass m1 and m2 separated by a distance l rotating
around their common centre of mass, find their (a) moment of inertia and (b)
angular momentum, if one full rotation takes a time period T

The distance of mass m1 from the COM is

r1 = m2

m1 + m2
l

and the distance of mass m2 from the COM is

r2 = m1

m1 + m2
l

(a) We can now find the moment of inertia:

I =
∑

mir
2
i

= m1

(
m2

m1 + m2
l
)2

+ m2

(
m1

m1 + m2
l
)2

= l2(m1m
2
2 + m2

1m2)
(m1 + m2)2

I = m1m2

m1 + m2
l2

(b) The angular momentum can also be quite concisely found:

L = Iω

ω = 2π

T

L = 2πI

T

L = 2π
(

m1m2

m1 + m2

)
l2

T
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3. Q: Estimate the angular momentum of the Earth: (a) in its orbit around the
Sun and (b) on its axis
(a) We can treat the Earth as a point mass at a certain distance from the sun. The

difficulty in this problem lies in estimating values such as the mass of the Earth and
the distance of the Earth from the sun. I’d encourage you to use any facts and
formulae you know - how long does light take to travel to the Earth from the Sun,
can you use this information to estimate the distance? How about using values and
formulae you know about gravity to estimate the mass of the Earth. Calculating
the angular velocity of the Earth around the sun is not a particularly difficult task -
just 2π divided by a year. For completeness, here is the calculation outlined above
using the true values:

L = (5.97 × 1024 kg) × (1.496 × 1011 m)2 × (1.99 × 10−7 rad s−1)

= 2.66 × 1040 kg m2 s−1

(b) Using a similar logic to the above, with the additional fact that the moment of
inertia of a sphere around I = 2

5MR2, I’ll write out the calculation below, where we
use the Earth’s mass, radius and its angular velocity as it spins on its axis.

L = 2
5 × (5.97 × 1024 kg) × (6.371 × 106 m)2 × (7.27 × 10−5 rad s−1)

= 7.05 × 1033 kg m2 s−1

4. Q: Prove that an unhinged, free body rotates about its centre of mass after a
force has been applied to it.
The simplest way to “prove” this is essentially by contradiction, showing that this is the
only possible way for the rigid body to move. In the absence of external forces, the center
of mass of any collection of particles moves at a constant velocity. This is true whether
they are stuck together in a single body or are just a bunch of separate bodies with or
without interactions between them. We now move to a frame of reference moving at
that velocity. In that frame the CoM is stationary.
Now suppose that the particles are indeed stuck together to form a rigid body. We see
that the body is moving so that: 1) the CoM remains fixed, 2) all the distances between
the particles are fixed i.e. it is rigid.
A motion with these two properties, (1) and (2), is precisely what is meant by the phrase
“a rotation about the CoM”. It would be impossible to have an axis of rotation which
doesn’t pass through the CoM, simply because this would result in the CoM exhibiting
circular motion, contradicting our statement that in the absence of external forces, the
centre of mass moves at a constant velocity.

5. Q: Why might the cross-product definition for angular momentum break down
in higher dimensions?
The full answer to this is quite mathematically rigorous, but essentially it relies on the
fact that we have defined the right hand rule for vectors rather arbitrarily. In higher
dimensions, there may be more than 2 possible vectors that are “perpendicular” or
orthogonal to the original 2 vectors for which we are finding the cross product and so
the right hand rule wouldn’t work. The proper generalisation to an n-dimensional space
would be to call angular momentum a bivector. The exact nature of bivectors is rather
terse so I won’t go into it, but feel free to look into it. As a fun fact, the 7-dimensional
cross product is well-defined, unlike for 4, 5 and 6 dimensions. Have a look into why this
is - it’s related to octonions.
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Coordinate systems

1. Q: By integrating in a cylindrical co-ordinate system, find the volume of a
frustum of a cone with base radius R, top radius r and height h.
The trick with this was to write the radius as a function of height, knowing that it varies
linearly with height between r and R. Then set up the integral as normal.

r(z) = R − R − r

h
z

V =
∫ θ=2π

θ=0

∫ z=h

z=0

∫ r(z)

0
r dr dz dθ

=
∫ θ=2π

θ=0

∫ z=h

z=0

[
r2

2

]r(z)

0
dz dθ

=
∫ θ=2π

θ=0

∫ z=h

z=0

r(z)2

2 dz dθ

= π
∫ z=h

z=0
r(z)2 dz

= π
∫ z=h

z=0

(
R − R − r

h
z
)2

dz

= π
∫ z=h

z=0

(
R2 − 2R

R − r

h
z +

(
R − r

h

)2
z2
)

dz

= π

[
R2z − R

R − r

h
z2 + 1

3

(
R − r

h

)2
z3
]z=h

z=0

= π
(

R2h − R(R − r)h + 1
3(R − r)2h

)
= πh

(
R2 − R2 + Rr + 1

3R2 − 2
3Rr + 1

3r2
)

V = 1
3πh(R2 + Rr + r2)

2. Q: Find the distance travelled by a particle in a time period τ , where the particle
is travelling in a helical path described by the equations: r = R, θ = ωt, z = vt

For this we can simply use the arc length formula:

s =
∫ b

a

√√√√(dx

dt

)2

+
(

dy

dt

)2

+
(

dz

dt

)2

dt

First we must convert our functions into Cartesian coordinates:
x = R cos(ωt)
y = R sin(ωt)
z = vt

And then simply compute from 0 until time τ :

s =
∫ τ

0

√
(−Rω sin(ωt))2 + (Rω cos(ωt))2 + v2 dt

=
∫ τ

0

√
R2ω2 + v2 dt

s = τ
√

R2ω2 + v2

18



3. Q: Calculate the moment of inertia for a cone with mass M , base radius R and
height L around the axis perpendicular to base, passing through the apex
The cone has uniform density so we can calculate this by diving its mass by its volume:

ρ = M
1
3πR2L

= 3M

πR2L

In cylindrical coordinates, the volume element dV = r dr dθ dz, so therefore the mass
element dm = ρ dV = ρ r dr dθ dz. We can now setup the integral:

I =
∫

r2 dm

= ρ
∫ θ=2π

θ=0

∫ z=L

z=0

∫ r= R
L

z

r=0
r3 dr dθ dz

= 2πρ
∫ z=L

z=0

∫ r= R
L

z

r=0
r3 dr dz

= 2πρ
∫ z=L

z=0

[
r4

4

]r= R
L

z

r=0
dz

= 2πρ
∫ z=L

z=0

R4

4L4 z4 dz

= 2π

[
R4

20L4 z5
]z=L

z=0

= ρ
πR4L

10

= 3M

πR2L
· πR4L

10

I = 3
10MR2

Notice how the answer doesn’t depend on the height of the cone.

4. Find the value of I where I =
∫∞

−∞ e−x2
dx

This is actually a pretty famous problem, in fact, this integral is called the Gaussian
integral. One way of solving it is by squaring the integral and then using polar coordinates:

I2 =
(∫ ∞

−∞
e−x2

dx
)2

=
(∫ ∞

−∞
e−x2

dx
)(∫ ∞

−∞
e−y2

dy
)

=
(∫ ∞

−∞

∫ ∞

−∞
e−(x2+y2) dx

)
Now, we can switch to polar coordinates, because r2 = x2 + y2, but note that the area
element dx dy becomes r dr dθ in polar coordinates. We also need to change our bounds
accordingly

I2 =
(∫ θ=2π

θ=0

∫ r=∞

r=0
e−r2

r dr dθ

)

= 2π
∫ r=∞

r=0
e−r2

r dr
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Here we employ a u-substitution where u = r2 (du = 2r dr)and continue:

I2 = π
∫ r=∞

r=0
e−u du

= π
[
−e−u

]u=∞

u=0

I2 = π

And so we can arrive at a rather interesting result

I =
∫ ∞

−∞
e−x2

dx =
√

π

5. Which points in R3 have the same co-ordinates in all 3 co-ordinate systems:
Cartesian, cylindrical and spherical?
It’s possible to come to this conclusion mathematically, but the only point that has the
same coordinate values in all 3 systems is the origin - (0, 0, 0).

Solutions to the problems from this issue will feature in the next issue!

Credits
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A special thanks to Mr. Carew-Robinson for his support and feedback.
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